幸运飞艇计划7码计算器

Skip to main content
PRL Project

The Continuum

by Robert L. Constable
2020


Abstract

The key feature of Brouwer’s intuitionistic mathematics is its treatment of the continuum of real numbers. That type includes real numbers given by computable sequences of rationals in the style of the 1985 book by Bridges and Bishop, Constructive Analysis. It also includes real numbers given by free choice sequences of point cores. It is natural to assign a com- putational complexity cost in the style of Hartmanis and Stearns to real numbers given by algorithms. However, free choice sequences are not given by algorithms. On the other hand, in order for a choice sequence to define a real number, the elements of the sequence must be increasingly better rational approximations to the number. There is a cost parameterized by the natural numbers to computing these rational approximations. That is one measure for the computational complexity of the real numbers given by free choice.

This short article establishes a framework for formalizing and investigating this notion of complexity for computing with Brouwer’s continuum. The fundamental principle about the intuitionistic continuum is the Continuity Principle. This is perhaps the central principle of Brouwer’s mathematics, showing that his real numbers are not enumerable, i.e. count- able, and it contradicts classical real analysis. It allows us to compute with Brouwer’s real numbers.

二分飞艇计划预测 精准免费的幸运飞艇神计划计划 飞艇1期计划 幸运飞艇开奖结果纪录完整版 幸运飞艇属于福彩不属于 幸运飞艇定位胆可以买几个数字 五码两期飞艇免费计划 幸运飞艇3把必中 幸运飞艇是哪国的 幸运飞艇怎么样跟计划稳赚 幸运飞艇【上恒达集团~HD161。COM~平台】 幸运飞艇【上恒达集团~HD161。COM~平台】 幸运飞艇【上恒达集团~HD161。COM~平台】 澳门百家乐【上恒达集团~HD161。COM~平台】 澳门百家乐【上恒达集团~HD161。COM~平台】 澳门百家乐【上恒达集团~HD161。COM~平台】 六合彩公司【上恒达集团~HD161。COM~平台】